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understanding the full life cycle of
bacterial chromosomes.
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Spatial Mapping: Graded Precision of
Entorhinal Head Direction Cells
Representation of head direction in medial entorhinal cortex shows a gradient
of precision, from high directional precision dorsally to low ventrally; this
parallels the gradient of spatial scale in place and grid cells, and suggests
that the brain constructs spatial maps of varying resolution, perhaps to serve
different requirements.
Kate Jeffery

The medial temporal cortex of the
brain, which includes the hippocampus
and associated structures, is well
known to have a specialised role in
spatial cognition. This navigation
system collects together information
about head direction, travel distance
and context, in order to construct a
representation of an individual’s
current location and heading [1]. This
representation culminates in the focal
firing patterns, or ‘place fields’, of the
hippocampal place cells, which are
sometimes thought of as a map which
serves both to guide navigation and to
store/retrieve memories. Early studies
of place cells revealed a gradient
of spatial scale, with small place
fields in the dorsal-most regions of
hippocampus, and large fields ventrally
[2,3]. More recently [4], the Moser
lab discovered that an important
cortical input to the place cells, the
grid cells in dorso-medial entorhinal
cortex (MEC), also shows spatial
scaling. Grid cells produce multiple,
often evenly-spaced firing fields
arranged in a hexagonal close-packed
array, with a characteristic orientation
in a given environment, and a
characteristic spacing for a given cell
(or set of cells); they may provide an
estimation of distance travelled — path
integration — for place cells. Just as
with place cells, grid spacing (scale)
increases markedly from around 30 cm
dorsally to some metres ventrally [5,6].
Now, as they report in this issue of
Current Biology [7], the Moser lab has
discovered that head direction cells
in this same region of MEC also show
a gradient of precision, with a range
of tuning curves dorsally but only the
broader tuning curves ventrally.
Giocomo et al. [7] analysed large

numbers of medial entorhinal neurons
in both rats and mice for directional
firing preference. As Sargolini et al. [8]
have also reported previously, head
direction cells were found throughout
the MEC in layers III, V and VI (not
layer II). In layer III (but not V/VI), the
authors observed a clear gradient, or
topography, of directional precision,
with sharply tuned cells being found
only dorsally. The gradation in tuning
was observed to be continuous, unlike
that for grid cells in which the increase
in scale from dorsal to ventral occurs
in stepped transitions that imply a
modular organisation [9]. This large
sample also confirmed the absence
of clustering of directional firing;
directional firing preferences were
distributed evenly around the 360
degrees, even though grids — the
presumed major recipient of head
direction information — have six-fold
rotational symmetry.
The finding of a continuous gradation

of directional tuning raises questions
about the network interactions
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underlying the generation of head
direction cell directional firing
properties. Head direction cells
are generally thought to comprise
recurrently connected one-dimensional
attractor networks [10] in which the
cells have similar connectivities; tuning
width gradations do not emerge
naturally from such self-organising
networkmodels. In order to understand
how such gradation could arise, it will
be important to determine whether
the more broadly tuned cells differ
in intrinsic membrane properties
or synaptic plasticity profiles, whether
the difference in tuning is extrinsic
and results from a difference in inputs,
or whether the differently tuned cell
types actually belong to different
subnetworks, each of which is
internally consistent, which are
differentially distributed across the
dorso-ventral extent of MEC.

What might be the adaptive
advantage of spatial encoding
gradients in the spatial system? It has
been suggested that variably-sized
place fields might allow the
representation of different sized
environments [2]; navigating around
the house is different from navigating
across town, or across the country, and
might require maps of different scales.
If scale were the relevant factor,
however, then we might expect to see
scaling relative to body size — large
grids in adults and small in infants;
large scales in rats and small in mice,
and so on. In fact, grid scales so far
seem fairly constant across
developmental stages [11,12] and
across species [13,14]. Also, the
notion of scale does not apply in the
head direction system in which there
are always only 360 degrees of
direction no matter how large the
environment.

An alternative (albeit related)
possibility, therefore, is that the
relevant difference is one of
resolution — small fields and tight
directional tuning might be used where
a high degree of precision is required,
while large fields and coarse directional
tuning might be used where the
specifics of location/direction are less
critical and the important processing
concerns the environment as a whole
(‘‘this field is dangerous’’ versus
‘‘I buried my food here’’). This
association of environments with more
generalised properties such as valence
may explain why the ventral regions
of the entorhinal-hippocampal system,
where the low-resolution maps are,
are also the regions less intensely
connected to sensory areas and more
richly imbued with subcortical
connections to emotional/motivational
systems [15,16]. Being able to defocus
the map means that information that
is relevant across an environment
can be efficiently associated with it
using a smaller number of neurons.

In summary, then, the current
findings extend observations of
dorso-ventral spatial gradients in the
entorhinal-hippocampal system from
linear to angular domains. These
findings raise questions about both
the cause and consequence of such
gradients, and suggest that the brain
makes a multiplicity of maps for a
variety of settings.
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Pain: Novel Analgesics from
Traditional Chinese Medicines
The search for analgesics with fewer side effects and less abuse potential has
had limited success. A recent study identifies an analgesic alkaloid compound
from Corydalis yanhusuo, a traditional Chinese medicinal herb that has a
surprising mechanism of action.
Susan L. Ingram

Opioids are the gold standard for the
treatment of severe acute and chronic
pain, but they induce undesirable side
effects and drug addiction in many
patients. The search for efficacious
pain relievers for both acute and
chronic pain that do not produce
tolerance or dependence has been
essentially futile, with few candidates
that have been successful in clinical
trials. Thus, identification of novel pain
therapeutics has been the basis of
research and design programs for drug
companies for many years. The lack of
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